1 Introduction

Objectives

As you read these words you are using a complex biological neural network. You have a highly interconnected set of some 10^{11} neurons to facilitate your reading, breathing, motion and thinking. Each of your biological neurons, a rich assembly of tissue and chemistry, has the complexity, if not the speed, of a microprocessor. Some of your neural structure was with you at birth. Other parts have been established by experience.

Scientists have only just begun to understand how biological neural networks operate. It is generally understood that all biological neural functions, including memory, are stored in the neurons and in the connections between them. Learning is viewed as the establishment of new connections between neurons or the modification of existing connections. This leads to the following question: Although we have only a rudimentary understanding of biological neural networks, is it possible to construct a small set of simple artificial “neurons” and perhaps train them to serve a useful function? The answer is “yes.” This book, then, is about artificial neural networks.

The neurons that we consider here are not biological. They are extremely simple abstractions of biological neurons, realized as elements in a program or perhaps as circuits made of silicon. Networks of these artificial neurons do not have a fraction of the power of the human brain, but they can be trained to perform useful functions. This book is about such neurons, the networks that contain them and their training.
1 Introduction

History

The history of artificial neural networks is filled with colorful, creative individuals from many different fields, many of whom struggled for decades to develop concepts that we now take for granted. This history has been documented by various authors. One particularly interesting book is Neurocomputing: Foundations of Research by John Anderson and Edward Rosenfeld. They have collected and edited a set of some 43 papers of special historical interest. Each paper is preceded by an introduction that puts the paper in historical perspective.

Histories of some of the main neural network contributors are included at the beginning of various chapters throughout this text and will not be repeated here. However, it seems appropriate to give a brief overview, a sample of the major developments.

At least two ingredients are necessary for the advancement of a technology: concept and implementation. First, one must have a concept, a way of thinking about a topic, some view of it that gives a clarity not there before. This may involve a simple idea, or it may be more specific and include a mathematical description. To illustrate this point, consider the history of the heart. It was thought to be, at various times, the center of the soul or a source of heat. In the 17th century medical practitioners finally began to view the heart as a pump, and they designed experiments to study its pumping action. These experiments revolutionized our view of the circulatory system. Without the pump concept, an understanding of the heart was out of grasp.

Concepts and their accompanying mathematics are not sufficient for a technology to mature unless there is some way to implement the system. For instance, the mathematics necessary for the reconstruction of images from computer-aided tomography (CAT) scans was known many years before the availability of high-speed computers and efficient algorithms finally made it practical to implement a useful CAT system.

The history of neural networks has progressed through both conceptual innovations and implementation developments. These advancements, however, seem to have occurred in fits and starts rather than by steady evolution.

Some of the background work for the field of neural networks occurred in the late 19th and early 20th centuries. This consisted primarily of interdisciplinary work in physics, psychology and neurophysiology by such scientists as Hermann von Helmholtz, Ernst Mach and Ivan Pavlov. This early work emphasized general theories of learning, vision, conditioning, etc., and did not include specific mathematical models of neuron operation.
The modern view of neural networks began in the 1940s with the work of Warren McCulloch and Walter Pitts [McPi43], who showed that networks of artificial neurons could, in principle, compute any arithmetic or logical function. Their work is often acknowledged as the origin of the neural network field.

McCulloch and Pitts were followed by Donald Hebb [Hebb49], who proposed that classical conditioning (as discovered by Pavlov) is present because of the properties of individual neurons. He proposed a mechanism for learning in biological neurons (see Chapter 7).

The first practical application of artificial neural networks came in the late 1950s, with the invention of the perceptron network and associated learning rule by Frank Rosenblatt [Rose58]. Rosenblatt and his colleagues built a perceptron network and demonstrated its ability to perform pattern recognition. This early success generated a great deal of interest in neural network research. Unfortunately, it was later shown that the basic perceptron network could solve only a limited class of problems. (See Chapter 4 for more on Rosenblatt and the perceptron learning rule.)

At about the same time, Bernard Widrow and Ted Hoff [WiHo60] introduced a new learning algorithm and used it to train adaptive linear neural networks, which were similar in structure and capability to Rosenblatt’s perceptron. The Widrow-Hoff learning rule is still in use today. (See Chapter 10 for more on Widrow-Hoff learning.)

Unfortunately, both Rosenblatt’s and Widrow’s networks suffered from the same inherent limitations, which were widely publicized in a book by Marvin Minsky and Seymour Papert [MiPa69]. Rosenblatt and Widrow were aware of these limitations and proposed new networks that would overcome them. However, they were not able to successfully modify their learning algorithms to train the more complex networks.

Many people, influenced by Minsky and Papert, believed that further research on neural networks was a dead end. This, combined with the fact that there were no powerful digital computers on which to experiment, caused many researchers to leave the field. For a decade neural network research was largely suspended.

Some important work, however, did continue during the 1970s. In 1972 Teuvo Kohonen [Koho72] and James Anderson [Ande72] independently and separately developed new neural networks that could act as memories. (See Chapters 13 and 14 for more on Kohonen networks.) Stephen Grossberg [Gros76] was also very active during this period in the investigation of self-organizing networks. (See Chapters 15 and 16.)

Interest in neural networks had faltered during the late 1960s because of the lack of new ideas and powerful computers with which to experiment. During the 1980s both of these impediments were overcome, and research in neural networks increased dramatically. New personal computers and
workstations, which rapidly grew in capability, became widely available. In addition, important new concepts were introduced.

Two new concepts were most responsible for the rebirth of neural networks. The first was the use of statistical mechanics to explain the operation of a certain class of recurrent network, which could be used as an associative memory. This was described in a seminal paper by physicist John Hopfield [Hopf82]. (Chapters 17 and 18 discuss these Hopfield networks.)

The second key development of the 1980s was the backpropagation algorithm for training multilayer perceptron networks, which was discovered independently by several different researchers. The most influential publication of the backpropagation algorithm was by David Rumelhart and James McClelland [RuMc86]. This algorithm was the answer to the criticisms Minsky and Papert had made in the 1960s. (See Chapters 11 and 12 for a development of the backpropagation algorithm.)

These new developments reinvigorated the field of neural networks. In the last ten years, thousands of papers have been written, and neural networks have found many applications. The field is buzzing with new theoretical and practical work. As noted below, it is not clear where all of this will lead us.

The brief historical account given above is not intended to identify all of the major contributors, but is simply to give the reader some feel for how knowledge in the neural network field has progressed. As one might note, the progress has not always been “slow but sure.” There have been periods of dramatic progress and periods when relatively little has been accomplished.

Many of the advances in neural networks have had to do with new concepts, such as innovative architectures and training rules. Just as important has been the availability of powerful new computers on which to test these new concepts.

Well, so much for the history of neural networks to this date. The real question is, “What will happen in the next ten to twenty years?” Will neural networks take a permanent place as a mathematical/engineering tool, or will they fade away as have so many promising technologies? At present, the answer seems to be that neural networks will not only have their day but will have a permanent place, not as a solution to every problem, but as a tool to be used in appropriate situations. In addition, remember that we still know very little about how the brain works. The most important advances in neural networks almost certainly lie in the future.

Although it is difficult to predict the future success of neural networks, the large number and wide variety of applications of this new technology are very encouraging. The next section describes some of these applications.
A recent newspaper article described the use of neural networks in literature research by Aston University. It stated that “the network can be taught to recognize individual writing styles, and the researchers used it to compare works attributed to Shakespeare and his contemporaries.” A popular science television program recently documented the use of neural networks by an Italian research institute to test the purity of olive oil. These examples are indicative of the broad range of applications that can be found for neural networks. The applications are expanding because neural networks are good at solving problems, not just in engineering, science and mathematics, but in medicine, business, finance and literature as well. Their application to a wide variety of problems in many fields makes them very attractive. Also, faster computers and faster algorithms have made it possible to use neural networks to solve complex industrial problems that formerly required too much computation.

The following note and Table of Neural Network Applications are reproduced here from the Neural Network Toolbox for MATLAB with the permission of the MathWorks, Inc.

The 1988 DARPA Neural Network Study [DARP88] lists various neural network applications, beginning with the adaptive channel equalizer in about 1984. This device, which is an outstanding commercial success, is a single-neuron network used in long distance telephone systems to stabilize voice signals. The DARPA report goes on to list other commercial applications, including a small word recognizer, a process monitor, a sonar classifier and a risk analysis system.

Neural networks have been applied in many fields since the DARPA report was written. A list of some applications mentioned in the literature follows.

Aerospace

- High performance aircraft autopilots, flight path simulations, aircraft control systems, autopilot enhancements, aircraft component simulations, aircraft component fault detectors

Automotive

- Automobile automatic guidance systems, warranty activity analyzers

Banking

- Check and other document readers, credit application evaluators
1 Introduction

Defense
Weapon steering, target tracking, object discrimination, facial recognition, new kinds of sensors, sonar, radar and image signal processing including data compression, feature extraction and noise suppression, signal/image identification

Electronics
Code sequence prediction, integrated circuit chip layout, process control, chip failure analysis, machine vision, voice synthesis, nonlinear modeling

Entertainment
Animation, special effects, market forecasting

Financial
Real estate appraisal, loan advisor, mortgage screening, corporate bond rating, credit line use analysis, portfolio trading program, corporate financial analysis, currency price prediction

Insurance
Policy application evaluation, product optimization

Manufacturing
Manufacturing process control, product design and analysis, process and machine diagnosis, real-time particle identification, visual quality inspection systems, beer testing, welding quality analysis, paper quality prediction, computer chip quality analysis, analysis of grinding operations, chemical product design analysis, machine maintenance analysis, project bidding, planning and management, dynamic modeling of chemical process systems

Medical
Breast cancer cell analysis, EEG and ECG analysis, prosthesis design, optimization of transplant times, hospital expense reduction, hospital quality improvement, emergency room test advisement

Oil and Gas
Exploration
Applications

Robotics
Trajectory control, forklift robot, manipulator controllers, vision systems

Speech
Speech recognition, speech compression, vowel classification, text to speech synthesis

Securities
Market analysis, automatic bond rating, stock trading advisory systems

Telecommunications
Image and data compression, automated information services, real-time translation of spoken language, customer payment processing systems

Transportation
Truck brake diagnosis systems, vehicle scheduling, routing systems

Conclusion
The number of neural network applications, the money that has been invested in neural network software and hardware, and the depth and breadth of interest in these devices have been growing rapidly.
Introduction

Biological Inspiration

The artificial neural networks discussed in this text are only remotely related to their biological counterparts. In this section we will briefly describe those characteristics of brain function that have inspired the development of artificial neural networks.

The brain consists of a large number (approximately 10^{11}) of highly connected elements (approximately 10^4 connections per element) called neurons. For our purposes these neurons have three principal components: the dendrites, the cell body and the axon. The dendrites are tree-like receptive networks of nerve fibers that carry electrical signals into the cell body. The cell body effectively sums and thresholds these incoming signals. The axon is a single long fiber that carries the signal from the cell body out to other neurons. The point of contact between an axon of one cell and a dendrite of another cell is called a synapse. It is the arrangement of neurons and the strengths of the individual synapses, determined by a complex chemical process, that establishes the function of the neural network. Figure 1.1 is a simplified schematic diagram of two biological neurons.

Some of the neural structure is defined at birth. Other parts are developed through learning, as new connections are made and others waste away. This development is most noticeable in the early stages of life. For example,
it has been shown that if a young cat is denied use of one eye during a critical window of time, it will never develop normal vision in that eye.

Neural structures continue to change throughout life. These later changes tend to consist mainly of strengthening or weakening of synaptic junctions. For instance, it is believed that new memories are formed by modification of these synaptic strengths. Thus, the process of learning a new friend’s face consists of altering various synapses.

Artificial neural networks do not approach the complexity of the brain. There are, however, two key similarities between biological and artificial neural networks. First, the building blocks of both networks are simple computational devices (although artificial neurons are much simpler than biological neurons) that are highly interconnected. Second, the connections between neurons determine the function of the network. The primary objective of this book will be to determine the appropriate connections to solve particular problems.

It is worth noting that even though biological neurons are very slow when compared to electrical circuits (10^{-3} s compared to 10^{-9} s), the brain is able to perform many tasks much faster than any conventional computer. This is in part because of the massively parallel structure of biological neural networks; all of the neurons are operating at the same time. Artificial neural networks share this parallel structure. Even though most artificial neural networks are currently implemented on conventional digital computers, their parallel structure makes them ideally suited to implementation using VLSI, optical devices and parallel processors.

In the following chapter we will introduce our basic artificial neuron and will explain how we can combine such neurons to form networks. This will provide a background for Chapter 3, where we take our first look at neural networks in action.
Further Reading

Anderson proposed a “linear associator” model for associative memory. The model was trained, using a generalization of the Hebb postulate, to learn an association between input and output vectors. The physiological plausibility of the network was emphasized. Kohonen published a closely related paper at the same time [Koho72], although the two researchers were working independently.

Neurocomputing is a fundamental reference book. It contains over forty of the most important neurocomputing writings. Each paper is accompanied by an introduction that summarizes its results and gives a perspective on the position of the paper in the history of the field.

This study is a compendium of knowledge of neural networks as they were known to 1988. It presents the theoretical foundations of neural networks and discusses their current applications. It contains sections on associative memories, recurrent networks, vision, speech recognition, and robotics. Finally, it discusses simulation tools and implementation technology.

Grossberg describes a self-organizing neural network based on the visual system. The network, which consists of short-term and long-term memory mechanisms, is a continuous-time competitive network. It forms a basis for the adaptive resonance theory (ART) networks.
Further Reading

Grossberg’s 1980 paper proposes neural structures and mechanisms that can explain many physiological behaviors including spatial frequency adaptation, binocular rivalry, etc. His systems perform error correction by themselves, without outside help.

The main premise of this seminal book is that behavior can be explained by the action of neurons. In it, Hebb proposed one of the first learning laws, which postulated a mechanism for learning at the cellular level.

Hebb proposes that classical conditioning in biology is present because of the properties of individual neurons.

Hopfield describes a content-addressable neural network. He also presents a clear picture of how his neural network operates, and of what it can do.

Kohonen proposed a correlation matrix model for associative memory. The model was trained, using the outer product rule (also known as the Hebb rule), to learn an association between input and output vectors. The mathematical structure of the network was emphasized. Anderson published a closely related paper at the same time [Ande72], although the two researchers were working independently.

This article introduces the first mathematical model of a neuron, in which a weighted sum of input signals is compared to a threshold to determine whether or not the neuron fires. This was the first attempt to describe what the brain does, based on computing elements known at the
time. It shows that simple neural networks can compute any arithmetic or logical function.

A landmark book that contains the first rigorous study devoted to determining what a perceptron network is capable of learning. A formal treatment of the perceptron was needed both to explain the perceptron’s limitations and to indicate directions for overcoming them. Unfortunately, the book pessimistically predicted that the limitations of perceptrons indicated that the field of neural networks was a dead end. Although this was not true it temporarily cooled research and funding for research for several years.

Rosenblatt presents the first practical artificial neural network — the perceptron.

One of the two key influences in the resurgence of interest in the neural network field during the 1980s. Among other topics, it presents the backpropagation algorithm for training multilayer networks.

This seminal paper describes an adaptive perceptron-like network that can learn quickly and accurately. The authors assume that the system has inputs and a desired output classification for each input, and that the system can calculate the error between the actual and desired output. The weights are adjusted, using a gradient descent method, so as to minimize the mean square error. (Least Mean Square error or LMS algorithm.)

This paper is reprinted in [AnRo88].